Search results

1 – 10 of 26
Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Book part
Publication date: 18 January 2024

Tulsi Pawan Fowdur, Satyadev Rosunee, Robert T. F. Ah King, Pratima Jeetah and Mahendra Gooroochurn

In this chapter, a general introduction on artificial intelligence (AI) is given as well as an overview of the advances of AI in different engineering disciplines, including its…

Abstract

In this chapter, a general introduction on artificial intelligence (AI) is given as well as an overview of the advances of AI in different engineering disciplines, including its effectiveness in driving the United Nations Sustainable Development Goals (UN SDGs). This chapter begins with some fundamental definitions and concepts on AI and machine learning (ML) followed by a classification of the different categories of ML algorithms. After that, a general overview of the impact which different engineering disciplines such as Civil, Chemical, Mechanical, Electrical and Telecommunications Engineering have on the UN SDGs is given. The application of AI and ML to enhance the processes in these different engineering disciplines is also briefly explained. This chapter concludes with a brief description of the UN SDGs and how AI can positively impact the attainment of these goals by the target year of 2030.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 18 January 2024

Robert T. F. Ah King, Bhimsen Rajkumarsingh, Pratima Jeetah, Geeta Somaroo and Deejaysing Jogee

There is an urgent need to develop climate-smart agrosystems capable of mitigating climate change and adapting to its effects. Conventional agricultural practices prevail in…

Abstract

There is an urgent need to develop climate-smart agrosystems capable of mitigating climate change and adapting to its effects. Conventional agricultural practices prevail in Mauritius, whereby synthetic chemical fertilizers, pesticides and insecticides are used. It should be noted that Mauritius remains a net-food importing developing country of staple food such as cereals and products, roots and tubers, pulses, oil crops, vegetables, fruits and meat (FAO, 2011). In Mauritius, the agricultural sector faces extreme weather conditions like drought or heavy rainfall. Moreover, to increase the crop yields, farmers tend to use 2.5 times the prescribed amount of fertilizers in their fields. These excess fertilizers are washed away during heavy rainfall and contaminate lakes and river waters. By using smart irrigation and fertilization system, a better management of soil water reserves for improved agricultural production can be implemented. Soil Nitrogen, Phosphorus and Potassium (NPK) content, humidity, pH, conductivity and moisture data can be monitored through the cloud platform. The data will be processed at the level of the cloud and an appropriate mix of NPK and irrigation will be used to optimise the growth of the crops. Machine learning algorithms will be used for the control of the land drainage, fertilization and irrigation systems and real time data will be available through a mobile application for the whole system. This will contribute towards the Sustainable Development Goals (SDGs): 2 (Zero Hunger), 11 (Sustainable cities and communities), 12 (Responsible consumption and production) and 15 (Life on Land). With this project, the yield of crops will be boosted, thus reducing the hunger rate (SDG 2). On top of that, this will encourage farmers to collect the waters and reduce fertilizer consumption thereafter sustaining the quality of the soil on which they are cultivating the crops, thereby increasing their yields (SDG 15).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 18 January 2024

Pratima Jeetah, Geeta Somaroo, Dinesh Surroop, Arvinda Kumar Ragen and Noushra Shamreen Amode

Currently, Mauritius is adopting landfilling as the main waste management method, which makes the waste sector the second biggest emitter of greenhouse gas (GHG) in the country…

Abstract

Currently, Mauritius is adopting landfilling as the main waste management method, which makes the waste sector the second biggest emitter of greenhouse gas (GHG) in the country. This presents a challenge for the island to attain its commitments to reduce its GHG emissions to 30% by 2030 to cater for SDG 13 (Climate Action). Moreover, issues like eyesores caused by littering and overflowing of bins and low recycling rates due to low levels of waste segregation are adding to the obstacles for Mauritius to attain other SDGs like SDG 11 (Make Cities & Human Settlements Inclusive, Safe, Resilient & Sustainable) and SDG 12 (Guarantee Sustainable Consumption & Production Patterns). Therefore, together with an optimisation of waste collection, transportation and sorting processes, it is important to establish a solid waste characterisation to determine more sustainable waste management options for Mauritius to divert waste from the landfill. However, traditional waste characterisation is time consuming and costly. Thus, this chapter consists of looking at the feasibility of adopting machine learning to forecast the solid waste characteristics and to improve the solid waste management processes as per the concept of smart waste management for the island of Mauritius in line with reducing the current challenges being faced to attain SDGs 11, 12 and 13.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 18 January 2024

Pratima Jeetah, Yasser M Chuttur, Neetish Hurry, K Tahalooa and Danraz Seebun

Mauritius is a Small Island Development State (SIDS) with limited resources, and it has been witnessed that many containers used for storing household and industrial products are…

Abstract

Mauritius is a Small Island Development State (SIDS) with limited resources, and it has been witnessed that many containers used for storing household and industrial products are made from plastic. When discarded as waste, those plastic containers pose a serious environmental and economic challenge for Mauritius. Moreover, landfill space is getting increasingly scarce, and plastic waste is contaminating both land and water. Therefore, it is of the utmost necessity to develop solutions for Mauritius' plastic wastes. Due to its abundance and accessibility, plastic waste is a promising material for recycling and energy production. One potential solution is the use of machine learning and artificial intelligence (AI) to predict household plastic consumption, allowing policymakers to design effective strategies and initiatives to reduce plastic waste. Such information is a critical component to be able to efficiently plan for the collection and routing of trucks when collecting recyclable plastics. The development of new strategies for the recycling of plastic waste and development of new industry can address the import and export potential of the country to achieve self-sustainability as well as contribute to reduction in plastic pollution and amount of waste landfilled. These plastics can thereafter be used effectively for recycling and for the making of 3D printing filaments which fall under the SDGs 9 (Industry, Innovation and Infrastructure) and 12 (Responsible consumption and production).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 6 September 2023

Noushra Shamreen Amode, Prakash N. K. Deenapanray and Pratima Jeetah

The chapter aims to evaluate the efficacy of stakeholder participation in the solid waste management system of Mauritius in view of providing a possible mechanism to attain the…

Abstract

Purpose

The chapter aims to evaluate the efficacy of stakeholder participation in the solid waste management system of Mauritius in view of providing a possible mechanism to attain the goals of a sustainable waste management framework.

Methodology

The study employs qualitative indicators, namely, User Inclusivity and Producer Inclusivity of the Wasteaware Benchmark Indicators. Secondary data are used to conduct a critical and comprehensive analysis of the sub-indicators falling under each of the two main indicators to determine the overall compliance level with respect to stakeholder engagement of the waste management sector of Mauritius.

Findings

The results of the study show a LOW/MEDIUM compliance level for both User Inclusivity and Provider Inclusivity indicators, which indicates that improvement is required in the stakeholder engagement mechanism in Mauritius. The main weaknesses identified comprise of lack of an adequate legal framework with clear definition of waste types with regards to segregation, especially for non-hazardous wastes, low efficiency of sustainable waste management awareness campaigns and lack of inclusion of the informal sector. The main strengths identified consist of a proper bidding mechanism in place and a good level of equity in the provision of waste management services with respect to comingled waste collection. Suggested improvement areas include a revamping of the existing legal framework related to waste management to cater for higher inclusivity of all stakeholders together with including sustainable waste management topics in the formal education curriculum.

Originality

The User Inclusivity and Producer Inclusivity indicators were previously applied only to cities to measure the level of stakeholder participation, but this study has demonstrated that these indicators can also be adopted on a nation-wide level to evaluate stakeholder engagement. The use of these indicators together with secondary data presents a less time-consuming method to assess stakeholder participation in the waste sector, which can be particularly useful for Small Island Developing States.

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 18 January 2024

Zaheer Doomah, Asish Seeboo and Tulsi Pawan Fowdur

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector…

Abstract

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector in an attempt to achieve related United Nations Sustainable Development Goals (SDGs) targets. ITS applications that have now been extensively tested worldwide and have become part of the everyday transport toolkit available to practitioners have been discussed. AI techniques applied successfully in specific ITS applications such as automatic traffic control systems, real-time image processing, automatic incident detection, safety management, road condition assessment, asset management and traffic enforcement systems have been identified. These methods have helped to provide traffic engineers and transport planners with novel ways to improve safety, mobility, accessibility and efficiency in the sector and thus move closer to achieving the various SDG targets pertaining to transportation.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 18 January 2024

Bhimsen Rajkumarsingh, Robert T. F. Ah King and Khalid Adam Joomun

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the…

Abstract

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the University of Mauritius are evaluated in this study. Students and building occupants were asked to fill out surveys on-site as data was gathered from sensors throughout the structure. The Thermal Sensation Vote (TSV) and other important data were collected through the surveys, including the effect of wind on thermal comfort. An adaptive model incorporating solar and wind effects was evaluated using multiple linear regression techniques and RStudio. Three models were used to evaluate thermal comfort, including the adaptive one. Numerous models were compared and evaluated in order to select the best one. It was found that the adaptive model (Model 1) was deemed to be the best model for its application. It was also found that Fanger's PMV/PPD (Model 2) was a very good approach to determining thermal comfort. Through thorough analysis, it was concluded that the range of air temperature and wind speed for thermal comfort was 25.830°C–28.0°C and 0.26 m/s to 0.42 m/s, respectively. In order for cities to remain secure, resilient and sustainable, it will be important to manage thermal comfort and reduce populations' exposure to heat stress (SDG 11). The achievement of income and productivity goals will be hampered if measures to protect populations from heat stress are not taken (SDG 8). Thermal regulation is also necessary for the provision of numerous health services (SDG 3).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

1 – 10 of 26